

How Fast Is It?:
Algorithmic Complexity

● Three aspects of a program
– Functionality: What does it do?
– Design: How does it do it?
– Performance: How fast is it?

● Performance depends on
– Speed and capacity of hardware (CPU, bus,

network...)
– Software environment (OS, other programs)
– Design of program

The Impact of Design on
Performance

● Tradeoff of resources
– RAM vs. disk
– Speed vs. space
– Remote vs. local

● Squeezing every ounce
– Virtual machine vs. native code
– Compiler optimizations
– Folk wisdom

● Avoid function calls
● Don't launch an external process

Algorithmic Complexity
● An algorithm is a formulaic method of producing

an output based on input
– Sorting students by height
– Finding the shortest path from your house to

Starbucks
– Compressing a song into a smaller file
– Go hand-in-hand with data structures

● Some ways of doing it are just plum faster
– And some take less space

Insertion Sort
● The typical way

people sort cards
● Start with all the cards

in the left pile
● One by one, put them

into the right pile,
finding the correct
spot in the order

Insertion Sort

Left pile Right pile Comparisons Moves
7284
728 4 0 1
72 48 1 1
7 248 1 1

2478 3 1
5 4

Merge Sort
● Divide the pile into

two halves
● Sort each half
● Combine the two

resulting piles into a
third pile, by drawing
the two top cards and
comparing them

Merge Sort

7284

72 84

7 2 8 4

27 48

2478

split into two piles

split each of those piles in half

to merge each pile, 1 comparison + 2 moves

to merge, 3 comparisons + 4 moves

But Which Is Faster in General?
● It depends how much a split or move costs, for

n cards
● We need a way to describe the speed of an

algorithm in simple terms, based on the input
size

● We mainly care about big input sizes, and the
worst-case time

Running Time Formulas
● For insertion sort, worst case is

– 1+2+3+...+n-1 comparisons
– Plus n insertions

● For merge sort, worst case is
– One split
– Plus twice however long it takes to sort each half
– Plus n-1 comparisons for merge

● Hmm... how long is that?
● Let's look just at the cost of comparisons, for

now

Summations and Recurrence
Equations

● Comparisons in insertion sort

● Comparisons in merge sort

● It looks a little cleaner, but how does that help?

T n=01⋯n−1=∑
i=1

n

i−1=n n−1
2

T 1=0
T n=2T n /2n−1

Asymptotic Behavior
● In the long run, which of these is faster?

T n=n2

T n=2n1000

n

T n

Asymptotic Notation
● The little terms don't matter
● We don't even care about constant coefficients
● What matters is the term with the biggest

exponent
● So, let's use a simple notation for expressing

what matters

n2∈Θ n2
2n1000∈Θ n

124582393∈Θ 1

Asymptotic Bounds
● When you say that a function is , it

means you can pick constants , , and such
that for all , .

Θ g n
c1 c2 n0

0≤c1 g n≤T n≤c2 g nn≥n0

T n

n
n0

c2 g n

c1 g n

T n

Back to Our Sorts
● So for insertion sort,
● For merge sort, we have a recurrence equation

● Maybe we don't care about , but what do we
do with the recurrence in the case?

● For now, we'll make a guess

T n= nn−1
2

∈Θ n2

T 1=0
T n=2T n /2n−1

T 1
T n

T n∈Θ n log n

