How Fast Is It?: Algorithmic Complexity

- Three aspects of a program
 - Functionality: What does it do?
 - Design: How does it do it?
 - Performance: How fast is it?
- Performance depends on
 - Speed and capacity of hardware (CPU, bus, network...)
 - Software environment (OS, other programs)
 - Design of program

The Impact of Design on Performance

- Tradeoff of resources
 - RAM vs. disk
 - Speed vs. space
 - Remote vs. local
- Squeezing every ounce
 - Virtual machine vs. native code
 - Compiler optimizations
 - Folk wisdom
 - Avoid function calls
 - Don't launch an external process

Algorithmic Complexity

- An algorithm is a formulaic method of producing an output based on input
 - Sorting students by height
 - Finding the shortest path from your house to Starbucks
 - Compressing a song into a smaller file
 - Go hand-in-hand with data structures
- Some ways of doing it are just plum faster
 - And some take less space

Insertion Sort

- The typical way people sort cards
- Start with all the cards in the left pile
- One by one, put them into the right pile, finding the correct spot in the order

Insertion Sort

Left pile	Right pile	Comparisons	Moves	
7284				
728	4	0	1	
72	48	1	1	
7	248	1	1	
	2478	3	1	
		5	4	

Merge Sort

- Divide the pile into two halves
- Sort each half
- Combine the two resulting piles into a third pile, by drawing the two top cards and comparing them

Merge Sort

split into two piles

split each of those piles in half

to merge each pile, 1 comparison + 2 moves

to merge, 3 comparisons + 4 moves

But Which Is Faster in General?

- It depends how much a split or move costs, for n cards
- We need a way to describe the speed of an algorithm in simple terms, based on the input size
- We mainly care about big input sizes, and the worst-case time

Running Time Formulas

- For insertion sort, worst case is
 - 1+2+3+...+n-1 comparisons
 - Plus n insertions
- For merge sort, worst case is
 - One split
 - Plus twice however long it takes to sort each half
 - Plus n-1 comparisons for merge
- Hmm... how long is that?
- Let's look just at the cost of comparisons, for now

Summations and Recurrence Equations

• Comparisons in insertion sort

$$T(n) = 0 + 1 + \dots + (n-1) = \sum_{i=1}^{n} i - 1 = \frac{n(n-1)}{2}$$

• Comparisons in merge sort

$$T(1)=0$$

 $T(n)=2T(n/2)+(n-1)$

• It looks a little cleaner, but how does that help?

Asymptotic Behavior

• In the long run, which of these is faster?

Asymptotic Notation

- The little terms don't matter
- We don't even care about constant coefficients
- What matters is the term with the biggest exponent
- So, let's use a simple notation for expressing what matters

 $n^{2} \in \Theta(n^{2})$ $2n + 1000 \in \Theta(n)$ $124582393 \in \Theta(1)$

Asymptotic Bounds

• When you say that a function T(n) is $\Theta(g(n))$, it means you can pick constants c_1 , c_2 , and n_0 such that for all $n \ge n_0$, $0 \le c_1 g(n) \le T(n) \le c_2 g(n)$.

Back to Our Sorts

- So for insertion sort, $T(n) = \frac{n(n-1)}{2} \in \Theta(n^2)$
- For merge sort, we have a recurrence equation

$$T(1)=0$$

 $T(n)=2T(n/2)+(n-1)$

- Maybe we don't care about *T*(1), but what do we do with the recurrence in the *T*(*n*) case?
- For now, we'll make a guess

 $T(n) \in \Theta(n \log(n))$